0960-894X(95)00171-9

PHARMACOLOGICAL EVALUATION OF COMBINED PGI₂ AGONISTS/THROMBOXANE SYNTHASE INHIBITORS. I

Nobuyuki Hamanaka,* Kanji Takahashi, Yuuki Nagao, Kazuhiko Torisu, Satoshi Shigeoka, Sumikazu Hamada, Hitoshi Kato, Hidekado Tokumoto, and Kigen Kondo

Minase Research Institute, Ono Pharmaceutical Co., Ltd. Shimamoto, Mishima, Osaka 618, Japan

Abstract. By incorporation of a pyridine moiety into compounds shown to be PGI₂ agonists, we have synthesized a series of compounds which also show potent thromboxane synthase inhibitory activity. Agents 9 and 14 with the 3-substituted pyridine moiety show a combined properties of PGI₂ agonist and TXA₂ synthase inhibitor.

Vane and his collaborators proposed an interesting homeostatic hypothesis whereby the prostaglandin endoperoxides H₂ and G₂ serve as substrates for the generation of two labile substances, thromboxane A₂ (TXA₂) and prostacyclin (PGI₂) with diametrically opposite biological effects. ^{1, 2} TXA₂ generated by blood platelets promotes platelets aggregation while PGI₂ produced by the vascular endothelium inhibits aggregation. In addition to its effects on platelets, PGI₂ may play an important role in preventing gastric ulceration by inhibiting secretion, in inflammation by inhibiting protease secretion of polymorphonuclear leukocytes, and in blood pressure regulation by control of vascular tone. These and other crucial physiological processes may be regulated by the opposing actions of TXA₂ and PGI₂. There has therefore been considerable interest in generating agents that modulate the action of TXA₂ or PGI₂; an agent that might adjust the action of TXA₂ and PGI₂ at the same time and in the one molecule.

We already reported the design of new PGI₂ agonists 1-5.³ Since the structures of our PGI₂ agonists are far from those of PGI₂ analogs, it would be easy to incorporate the another function which is essential to show the additional activity. Several compounds, such as ONO-1581 (6)⁴ and OKY-046 (7)⁵, have been reported to be effective TX synthase inhibitors. In the process of our design of PGI₂ agonists, we have postulated that the affinity of binding to the PGI₂ receptors is dependent on the geometrical relationship between carboxylic acid and terminal phenyl groups. With regard to TXA₂ synthase inhibitors, there is the most important engagement of the spatial position between the carboxylic acid and the pyridine (or imidazole) unit. Our strategy was based on the incorporation of a pyridine group into one of the terminal phenyl groups of the PGI₂ agonists in expectation of present a superior anti-thrombic effect by combination of PGI₂ agonists and TXA₂ synthase inhibitors.

Biological Results and Discussion

Tables 1 and 2 show the PGI_2 agonistic activity and TXA_2 synthase inhibitory activity of chosen structures. Evaluation of PGI_2 agonistic activity was undertaken by measuring inhibition of 4 μ M ADP-induced human platelet aggregation. TXA_2 synthase activities in human platelet microsome were measured by TXB_2 assay unit obtained from Cayman using PGH_2 as a substrate, IC_{50} values were determined.

The results in Table 1 show that introduction of one pyridine group instead of a phenyl group in 1 to afford 8-10 results in success in combination of PGI₂ agonistic activity and TXA₂ synthase inhibitory activity. For example, 3-substituted pyridine derivative 9 possesses weak PGI₂ activity but potent TXA₂ synthase inhibitory activity, relative to the 2 or 3-substituted pyridine derivatives 8 and 10. It is apparent that the structure-activity relationship for the two biological effects do not parallel each other and a compromise on the two activities is necessary; 3-substituted pyridine compound 9 was chosen for further evaluation.⁶

The evaluation of a series of structurally varied agents possessing the 3-substituted pyridine moiety revealed the structure-activity correlation between PGI₂ agonistic activity and TXA₂ synthase activity as shown in Table 2. The comparable activity between diphenyl derivatives and 3-pyridyl phenyl derivatives suggests that the pyridine function contributes a little to the productive PGI₂ activity. While it is essential for TXA₂ activity, compounds 9 and 14 showing the most potent TXA₂ synthase inhibitory activity. In this way, we succeeded in the design of structurally novel agent which display a combined PGI₂ agonism and TXA₂ synthase inhibition.

Table 1 The Effect of Pyridine Derivatives on PGI₂ Agonistic and TXA₂ Synthase Inhibitory Activity

No.	R	PGI ₂ Agonistic Activity IC ₅₀ (μM)	TXA ₂ Inhibitory Activity IC ₅₀ (nM)	
1	O	0.23	inactive	
8		0.57	>1000	
9	V v	1.4	20	
10	N	0.48	210	
lloprost		0.0014	inactive	
6 ONO1581		inactive	3	
7 OKY046		inactive	10	

References and Notes

- 1. (a) Bunting, S.; Gryglewski, R.; Moncada, S.; Vane, J. R. *Prostaglandins*, 1976, 12, 897. (b) Dusting, G. J.; Moncada, S.; Vane, J. R. *ibid*, 1977, 13, 3.
- 2. Hamgerg, M.; Svensson, J.; Samuelsson, B. Proc. Nat. Acad. Sci. USA, 1975, 72, 2994.
- 3. Hamanaka, N.; Takahashi, K.; Nagao, Y.; Torisu, K.; Tokumoto, H.; Kondo, K. *Bioorg. Med. Chem. Lett.*, preceding paper in this issue.
- 4. Tanouchi, T.; Kawamura, M.; Ohyama, I.; Kajiwara, I.; Iguchi, Y.; Okada, T.; Miyamoto, T.; Taniguchi, K.; Hayashi, M.; Iizuka, K.; Nakazawa, M. J. Med. Chem., 1981, 24, 1149.

Table 2	The Effect of Pyridine Derivatives on PGI ₂ Agonistic and
	TXA ₂ Synthase Inhibitory Activity

No.		R	PGI ₂ Agonistic Activity IC ₅₀ (μM)	TXA ₂ Inhibitory Activity IC ₅₀ (nM)
1	N _O Ph	Ph	0.23	inactive
9	ОСООН	3-pyridine	1.4	20
2	N _O R	Ph	0.15	inactive
11	Соон	3-pyridine	0.32	85
3	N R	Ph	0.13	inactive
12	COOOH H	3-pyridine	0.15	320
4	N N N R	Ph	0.057	inactive
13	СООН	3-pyridine	0.44	940
5	O' Ph	Ph	0.25	inactive
14	ОСООН	3-pyridine	0.24	40

- 5. Iizuka, K.; Akahane, K.; Momose, D.; Nakazawa, M.; Tanouchi, T.; Kawamura, M.; Ohyama, I.; Kajiwara, I.; Iguchi, Y.; Okada, T.; Taniguchi, K.; Miyamoto, T.; Hayashi, M. *ibid.*, 1981, 24, 1139.
- 6. Details will be reported in a separate paper.

(Received in Japan 8 March 1995; accepted 10 April 1995)